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Abstract—A general design sensitivity formulation is introduced for non-linear elastic structures
reaching critical equilibrium states. A discretized formulation is considered first and the sensitivity
analysis is discussed for regular and critical states including analysis of post-critical behavior. Next,
a variational approach is presented for beam and surface structures for which generalized stress
and strain operator formulation is applied. The formulae for sensitivity of bifurcation loads are
derived in terms of adjoint fields which are shown to be equivalent to post-buckling fields in the
case of symmetric bifurcation.

1. INTRODUCTION

When a non-linear elastic structure is subjected to increasing external loads, it usually first
passes through a regular deformation range associated with stable and unique response.
Then the structure often reaches a critical state such as a limit or bifurcation point. Two
related problems of interest are the immediate post-critical behavior and the variation of
critical load with structural or imperfection parameters. For some cases, the character of
critical point is not changed when small design variation occurs, but the critical load value
is modified. In other cases, a design variation or geometric imperfection may induce
disappearance of a critical point or change of its character. Such general questions of design
sensitivity of critical equilibrium states will be discussed in the present paper. Qur analysis
will follow the previous work by Mr6z (1987), Szefer et al. (1987), Mréz et al. (1985), Mréz
and Haftka (1988), Cohen and Haftka (1989), Haftka et al. (1990), and Dems and Mroz
(1989) on sensitivity of buckling loads and vibration frequencies of plates and shells with
respect to variation of stiffness parameters and shape. A general variational approach to
sensitivity analysis was presented by Haftka et al. (1990) and applied to surface structures
within a generalized stress and strain formulation. The explicit sensitivity expressions were
derived for variation of the critical load factor at the bifurcation point and of the vibration
frequency. The close relation between design sensitivity and post-buckling analyses was
indicated.

In Section 2, the design sensitivity of conservative discretized structures will be dis-
cussed in the regular case. In Section 3, the sensitivity of limit and bifurcation points will
be considered. In Section 4 the variational approach will be applied to surface structures,
thus paralleling our analysis of discretized systems. Section 5 is devoted to sensitivity
of non-conservative discrete systems, and Section 6 discusses sensitivity of some simple
structures.

2. SENSITIVITY ANALYSIS IN A REGULAR CASE

Consider an elastic discretized structure whose deformation is described by a set of
generalized coordinates ¢; and whose potential energy has the form
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V=Vg,4s), k=1,...,n, )

where A denotes the proportional loading parameter, and s is a design or imperfection
parameter. The equilibrium equations are generated from (1)

a—V—V( A,8) =0, i=1 2
aqi— (G, A4,8) =0, i=1,...,n 2)

Consider the equilibrium path in the n+ 1 load-configuration space (Fig. 1). Let the
progression parameter along this path be #, so that q = q(#), 4 = A(y). Then, at any
equilibrium state q°(y7,), A°(17,), we can write

4 =q +4An+3GAn* + - -,
A=A+ AAn+ 1A+ - 3)

where §;, G, ..., 4, 4, ... denote derivatives of ¢; and A with respect to  at ¢ = q°, 2 = A°,
1 =1, and An = n—1n,.

Equations (3) specify the load-deformation process in the vicinity of a considered
equilibrium state g, A,. Consider now the structural transformation process generated by
the variation of s. This process can be conceived to occur separately or simultaneously with
the deformation process. It can therefore be assumed

s =s"+5An+L5Ant+ -, 4

where $, §, ..., denote derivatives of s with respect to # at 5 = 5,. For load-deformation
processes we set s = s, § = § = --- = 0. On the other hand, for transformation processes
weset A =A% 1= A= =0. The progression parameter could be any generalized coor-
dinate, for instance, n = ¢q,, or load factor, n = A. For transformation processes one can
sety=s,and thens=1,§=F=---=0.

Differentiating (2) one obtains a set of identity relations expressing equilibrium
conditions associated with variation of configuration, loading and structural parameters,
namely

Vijqj+ Va}H‘ Vies = 0, (5)
Vidi+Vidide + 2V s+ 2V 386+ 2V igSA+ Vi A2+ Vi s+ Vid+ V5 =0, (6)

and the third-order perturbation equation has the form

load deformation path

Ab

N

A=const.

a)l b)

Fig. 1. (a) Load-deformation path of structure passing through limit point critical state path and
transformation path. (b) Sensitivity diagram.
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ViuGidedi+ 3Viudsde+ Vil + 3VieadsGed + 3V s dies + 3V idid+ 3V 48
+ 3Vl A+ 3V S+ Vi + V343 Vi A2+ 3V ey §2 + 6V 04, A5
3V A4 3V oS5+ 3V S 4 3V i A5+ 3V A28+ 3V A + Vi + Vis® = 0. (D)

This set of perturbation equations allows for study of both deformation response, identi-
fication of critical points, and also of sensitivity to imperfection and design variations.

2.1. Incremental load-deformation response
Let us first discuss the regular case and assume that

Vig; #0, or det[V,]#0. 8

With § = 0, eqn (5) provides the incremental equilibrium conditions along the load
path.

Vigi+Vid =0, ®
where V(gf, 4, s°) is the tangent stiffness matrix, and where to distinguish the derivatives
with respect to loading parameters from other derivatives used in this paper, we denote

them with primes instead of dots. When V; is positive definite, the incremental problem (9)
is associated with the minimum principle of the incremental potential energy function

W(g, V) = 1V,;qiq;+ Vagid . (10)
In fact, the stationary condition for W leads to (9), that is
oW = (V,q;+Vui)oq; =0, (1

where dq; denotes a kinematically admissible variation. The absolute minimum of W occurs
in the class of kinematically admissible g%, thus in view of (9)

W(gk, )~ W(g, X)) = 3V,qkq* = 3Vuqiq,+ Valg* —add = 3Vi(g* —q)(g/* —q7) = 0.
(12)

The second order incremental energy associated with (6) can be constructed in a similar
way with the minimum condition specified by (12).

2.2. Incremental transformation response : sensitivity analysis

2.2.1. Direct approach to sensitivity analysis. Constder now the transformation path
occurring at fixed A but with varying design or imperfection parameter s. We denote the
derivative of q with respect to s by q,, and then from (5) it follows that

Vigi+ Vi =0. (13)
The solution of (13) provides the sensitivity q,. Consider now an analytical function
G = G(g,5) = G(q(s), 9 (14)
The variation of G along the transformation path can be presented as follows :

G = Gy+GAs+3GAs* + LGAs* + - - -, (15

where
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G = qusi+Gs! G = Gijq.\'igsj+ZGixqsi+Gss+qussi’ ] (16)

and g, the second derivative of the displacement with respect to s, can be determined from
(6), specialized to the case of n = s

Vidsi+ Vi g +2Vis g+ Vi, = 0. (17)
2.2.2. Adjoint approach to sensitivity analysis. Consider now the adjoint method. We

derive the variation of G due to variation of s subject to the equilibrium constraint (2).
Assuming 4 is constant, the augmented function is

G = G(g;,5) —w:Vi(q;,9), (18)
where p is a Lagrange multiplier vector. The variation of G is expressed as follows:
G =Gq;+G,—wVyq;— Vi = (= Vyp+G)g;+G,— i, V. (19)

In order to eliminate the (computationally expensive) term g,; in (19) we require the adjoint
structure to satisfy

Y

which requires a solution with the tangential stiffness matrix V. Now the first order
sensitivity G can be expressed as

G=0G=0G,—uV, @1

Instead of direct determination of ¢,; from (13) followed by calculation of G from (16), we
may use the adjoint state y; from (20) and calculate G from (21). The adjoint method is
efficient when we need the derivative of G with respect to many variables, since only one
adjoint solution is needed. The expression for G in (16) requires the calculation of the
second derivative field g,,. Using the adjoint method we can eliminate this term. We start
by specializing (6) to the transformation path and multiply by y; to get

Vi Goe + 2Vl Qs+ Vishti + Vi i qss; = 0. (22)
Using (20), the last term in (22) is equal to G,q,,;, and then G from (16) may be written as
G = (— Vittioe — 2V ietti+ G+ 2G )G+ G — Vi (23)
3. SENSITIVITY ANALYSIS FOR CRITICAL STATES
Consider now a critical state satisfying the condition
Vigy=0 or det{Vi]=0, (24)

where g, is the eigenvector of Vj; associated with the zero eigenvalue (assumed to be a
simple eigenvalue). Multiplying (9) by ¢,; we obtain

quVid =0, (25)

so that either V4q,;, =0, or 4’ =0, at the critical state. The first case corresponds to
bifurcation and the second to limit point. The values of the potential energy and coordinates
at the critical state are denoted by the superscript ¢ and the critical load path derivative is
A
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3.1. Limit point sensitivity and post-critical response

For a limit point we have A, = 0 as well as (24). From (9) we see that q' is a scalar
multiple of the eigenvector q,, and its magnitude can be determined only by choosing a
path parameter. For example, if the path parameter is chosen to be the jth coordinate, g;,
then we have an additional equation, ¢; = 1, which together with (9) defines /bq’". Setting
§ = 0 in (6) and using primes to denote load path derivatives we get

Vodi+ Vi didi+2V5d g+ Vigd? + ViA! = 0. (26)

Multiplying (26) by ¢; and evaluating at the limit point (1 = 4., A, = 0) we obtain with the
aid of (9)

Ve, a'd'.d.
o= - Visditai @

Design or imperfection sensitivity can be calculated from (5) and (6) by considering
the critical state path following limit points. Along that path we can have s = n so that
§ =1, § =0, etc. However, now both 1 and s change simultaneously. Multiplying (5) by
¢1; we can solve for 1 which is the sensitivity of A, with respect to s

: Visqu
A’cs =A=— ¢ . 28)
Viq (
Similarly, by multiplying (6) by ¢,; we obtain
ho= i VGGGl Wi+ Wt ViAAVidgn g

Vi

To evaluate q° appearing in (29) we need to solve eqn (5) which is singular at 4 = 4.
Equation (28) provides the consistency condition guaranteeing that (5) has a solution at
4 = 4. However, we need one additional equation to make the solution of (5) unique. This
extra condition is provided by differentiating (24) along the critical path to obtain

Viedydi+Vingyde+Vigy+ V54, =0. (30)
Multiplying by ¢;; we have
Vieqiq g+ ijiq“quic‘i‘ Visq19,,=0 (31

which together with (5) provides the solution for ¢°. Equation (30) can also be used to find
41> the derivative of the limit-load eigenvector. However, this equation is also singular and
must be supplemented by another relation derived from the normalization condition for
the eigenvector. If that condition is

Tiq9uq, =1, (32)

where T; is a positive definite matrix, then by differentiating (32) we obtain
T;94: =0, (33)

which is an orthogonality condition on q.
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3.2. Bifurcation point : post-critical behaviour
Consider now the bifurcation point for which the following conditions are satisfied

Vigy =0, Vig,:=0. 34

We denote the generalized displacements along the fundamental loading path by qq,
and those along the post-critical path by q, so that after bifurcation

4; = qoj+Angh+ A g+ sAnig s+ (35)

where # is the post-critical path parameter. We assume that g,; is evaluated at the same
load as g; which brings in an indirect dependence of g, on 5. This is

d; = oA+ gl + Angy+3An7qy+ -,
G = qu A + qo i+ o+ Angy+ -, (36)

where primes denote derivatives of the prebuckling state with respect to the load. The
equations needed to obtain ¢7; and gqf; are obtained from (5) and (6) by setting the path
parameter to be 4

Vigu+Vi=0,
Vidqoi+ Viedoj@ox+2Viq0+ Vi = 0. (37

Since V7§ is singular, g%; cannot be completely evaluated from eqn (37a), and an additional
condition is required. This is obtained by multiplying eqn (37b) by ¢,

Viedriqojqoe +2Viquq0+ Viug = 0. (38)
To find q} we substitute ¢, at Ay = 0 from (36) into (5) with § = 0. Using (34) we get

Vi,¢% = 0, which indicates that qf is an eigenvector of V7, so that it is a scalar multiple of
q,. Since q, is of indeterminate magnitude, we write

q’i = ql = ac(—ll (39)
where §, is the eigenvector ¢, normalized to unit magnitude, and «, will depend on the
choice of #, as discussed later in this section. In order to derive the equation specifying ¢,
let us write (6) for the post-critical path, setting § = § = 0 and using (36) with Ay = 0. We

obtain

Vf}k():r‘]'oj'f“ q1) (Aequw+aqu)+ ZVE}A(L qo;it+4q 1j);{'c
+VL A+ VA2 g+ A+ @)+ Vide = 0. (40)

We now use (37) to obtain the equation specifying g,;, namely
Vieququ+ Vo u+2Viq)Ac+Vigy =0 (41

where we have made use of the symmetry Vi, = Vi
Multiplying eqn (41) by ¢, and solving for 4, we get

_ Vikduq 9w (42)
2(Ving 199w+ Vi:9uq,)

.
A=

Using (39), we can write {42) as
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A

A= 5% 43)

where
4= ijkq—liq_qu-lk
B=—(Vixquqoidu~+Viidudy- (44)

Assume now that 5 represents the post-critical path length traced by generalized
coordinates. Using (36a) and (39), we have

e = (‘I.iq'i)”2 = [ql()iq,()iicz+q-liq_lia3+2q-liq/0iicac]]/2

A 2 A 1/2
- ror [ 2 ZGah = 45
ac|:q01q01(23) +1+ B‘Ih‘]o::l 1 ( )
where (43) was substituted into (45). Now, (45) provides
A 2 A _ , —1/2
o, = I:q,mq,o:'<§§> +1+ B ‘IIi‘Iol':l . (46)

Alternatively, one may select the coordinate g, as a path parameter. Then, we have

. A i
H=q = qoh+%4qr =°‘c<27}q'01+q”>=1, 7"
and
A -1
o, = l:(711+ﬁq'01] . 48)

When 7 represents the total path length in the n+ | dimensional load-configuration space,
then

i=2+¢4) " =1 (49)

and

A 2 A -1/2
o= [rang (5] +1+ hanan | (50)

A more detailed discussion of evolution through critical paths can be found, for instance,
in Riks (1979), Kouhia and Mikkola (1989), and Flores and Godoy (1992).

Equation (50) is useful for asymmetric bifurcation. For symmetric bifurcation
Viq1:91;9 1 1s zero and we need to use g, to evaluate A, from (7) specialized to the post-
critical path

Vind;iGedi+3Vind;de+ Viq+3Viuddide+ 3V, 4.4+ 3Vi.d, A
+V&Z+3 Vi q,lf +3Vidhe+ Viudl = 0. (51)

The corresponding equation for the prebuckling path with A as the path parameter is
Vi @oi Qox Qo+ 3V i Qo;don + Visqo; + 3V ad 050k + 3V 5205+ 3Vi0uq0+ Vi = 0. (52)

We start the process of evaluating A, by the evaluation of g4, from (38). Since Vi is

SAS 31:15-E
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singular we need an additional condition, obtained by evaluating (52) at the critical point
and multiplying by ¢,

Vikduqoqoedoa+3Viuquqoiqon+3Ving o qu+3Viquq+3 Viaduqo+Viugu =0.
(53)

Next we substitute from (36) into (51) multiplied by g,,and evaluate it at the bifurcation
point
ijkﬂn(;[cq;)j +q1y) (}:cql()k +qu) (4 qutqu)+3Vi g4, qo;+ qu)(}:czq,(,)k + 4. +qu)
+3 fou):cq li(';{cq,oj+qu)(‘icqlﬂk +qu)+ 3V€f.19n():c2 g5+ ch'oj + %;)ic

+3V5:001 g0+ 4 ) A+ 3V g A gy + G+ IViquid + Viuguil =0. (54)
We subtract A} times (53) and 3/.1.q,; times (37b) to obtain

V?}kf(‘i’u‘hj‘?ik‘h:+3ic-Q1iQqu1in1+32343:‘43;‘}’01«%1)
+3ijk(’icqliq/()jqzk+'ic2q1iq1jq’6k+chliquq,0k+q1iquq2k)+3V§jkl;{c(2'{cqliq’0jq1k+qliquq1k)
+3V%Aq1fq2j):c+3Vz€jlq1iqu}:c+3V;}UQ1iqu'{g =0, (55)

so that
. A+Bl +CA2
A= — —— - —, (56)
3Vingugy+Vindg.a,q9u)
where
A= Viugugyququ+3Vidug,qu.
B =3Viuq19059uqut+3Vingudoqdu+3V i duq 9w +3Viguqzy
C=3Viugudoquqdu+3Vinguq,dou+06Vi:q1909 1. (57
For the symmetric bifurcation point we have 4, = 0 and (56) becomes
. A
A= (58)

- 3Viagugy+ Viedugudo)

The formulae (56) and (58) coincide in particular with those derived by Thompson and
Hunt (1973) who considered the post-critical response using a local coordinate system
sliding along the fundamental equilibrium path. The present derivation is presented in
the global coordinate system and could be reduced to a local system by setting

Goi=qoi=qoi=0.

3.3. Bifurcation point : sensitivity analysis

Assume that the design variation occurs such that the bifurcation point is preserved
(rather than the more common situation where it becomes a limit point) and the critical state
path A B from the bifurcation point connects the consecutive bifurcation point satisfying (34)
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x‘ q T/Sz )\

q° _Zu 2= _Séi

0, -7 A

< 7 critical state

- r B o] h
x ,// X
0 g aqe q 0 as
a} b)

c) d

Fig. 2. (a) Load deformation path of structure passing through bifurcation point and critical state
path for regular case. (b) Sensitivity diagram for regular case. (c) Load deformation path of structure
and critical state path for singular case. (d) Sensitivity diagram for singular case.

(Fig. 2). Such a situation can occur, for instance, due to a plate or shell thickness variation
or a laminate fiber angle modification in a composite structure that does not destroy the
symmetry responsible for bifurcation.

For the critical state path we have from (5)

Vigi+Vids+Vis=0. (59)

Since at the bifurcation point conditions (34) occur, then the regular sensitivity case,
for which A, is finite, requires that

7..:Vi=0, ¢q,Vi=0. (60)
Multiplying (59) by the eigenmode ¢,;, one obtains formula (28). However, now both
denominator and numerator vanish at the critical point, and to assess 4., one has to apply

higher order equilibrium and critical state conditions. Consider evolution of the bifurcation
point due to design variation. Along the critical path, we have

Viquq, = 0, Vi=0, (61)

where the first equation expresses the critical state condition and the second is the equilibrium
condition. Considering the second equation (61) as constraint set on the critical state
condition and introducing the Lagrange multipler u;, we can introduce an augmented
critical condition

E=Viquqy+uVi=0. (62)

Differentiating (62) with respect to the critical path parameter, we obtain
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Viedeq1uqy~+4aVinguquy+Visgugy+w(Vig +AVi+ Vi) =0. (63)

Note that along the critical path both the load and the stiffness may vary simultaneously so
that

qfc = j'csq,Ok +qom (64)

and (63) may now be written as follows

Vi ququ+ wVidqos + Al (Vin gk + Vi)qugy+ m(Vigo+ Vi)l
+ Vf}s‘]liqu'{'llin} =0. (65)

We have now two options for calculating A, from (65). Setting the term containing g
as vanishing one obtains

P Vikgiqyqos+ Vi a4y
¢ (ijkq’()k'*' iji)‘lliqu

(66)

This form requires the calculation of the prebuckling sensitivity qy. In order to avoid this
calculation, let us specify the adjoint field g by requiring that the coefficient of g, in (65)
vanishes, that is

Viti+Vixguiqy = 0. (67)

By multiplying eqn (67) by g,, we note that V{,¢:q;9x = 0, so that eqn (67) is consistent
only for symmetric bifurcation.
In view of (37a) and (67), eqn (65) provides the alternative expression for ., namely

wVis+Visduqy

A’ﬂ' = - /4 ’ (4 *
Vi qow+ Vg9

(68)

Thus, the critical load sensitivity is expressed in terms of the eigenmode and the adjoint
field y, satisying (67). Note that the field g is the same as the post buckling field g, defined
by (41) for the case of symmetric bifurcation. In fact, when 4. = 0, eqn (41) specifying g,
is identical to (67).

Consider now the singular sensitivity case, typical for study of geometric imperfection
sensitivity. In order to make distinction with the regular sensitivity case, denote the load
variation by A", ¢ = ", s = §” along the critical state path. We have now for cases of
asymmetric bifurcation

ququj = 0’ QIinA = 0, q”VE; # 0. (69)

Then (5) evaluated at the critical state provides

Vigr+ VA +Vism =0. (70)
Multiplying by g,; we get
0Vl +Viides + Vi) = 0 (71
and in view of (69) we have
§"=0. (72)

Along the critical path issuing from the critical point, we have
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@7 = I"qoy+qoy (73)
Substitute (73) into (70), which gives
(Viqos+ VidA" + Viigo,; = 0. (74

But the first term vanishes since it expresses the equilibrium condition along the prebuckling
path, so we have

Viqo; = 0. (75)
Since (75) is the critical state condition, identical to (69), we conclude that
Gos = 41 = %Gy, (76)
where «, is the scaling parameter with respect to the normalized eigenvector §,;. Thus the
critical state path vector g,,; coincides with the buckling mode g,;.
Differentiating the critical state condition V§;q,; = 0, we have
Vikqudi + Vg uA™ +Viqus™ +Vidy = 0. an
Substitute
g = I"qoi+qog = "o+ 9y (78)
into (77) and multiply by ¢,; to obtain

. Vind14y
im = _ = jqul Ql/;{;k ] (79)
gedugydoutViadugdy

Comparing (79) with the expression (42) for post-critical derivative, we see that
im =21 (80)
and the scaling parameter o, can be obtained from (46), {(48) or (50) depending on the
selection of path parameter. Consider now the second order equilibrium equation following
from eqns (76) and (72)
Vidr+Vidl df +2V 5 i im + V(") + Vad™ + Vi = 0 (81)
and the contracted form after multiplication by ¢,
Vikqudldi +2V5qudi A"+ Vingu(A™? + Vg, 5" = 0 (82)

which provides:

m ijkqliéi»”é‘i‘ﬁLZijzquq;”i’“*- Viagu(dm?

" = 83
stqli ( )
Assuming that V;; = 0, so that A enters linearly into ¥(g;, 4, 5), we have:
= V?,-k%é}"éi’+2V§zquq'§”i'” (84)

Vg

In view of (72) there is
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As = 5" —5, = 15"An? + 5" Ay’ + -
Ak = A"—h. = I"An+30"Apt 4 - - -, (85)

Neglecting higher order terms and eliminating Ay in (85) we obtain

2As

T (86)

Ad=+1n

which provides the square root singular sensitivity typical for geometric imperfection.
A similar discussion can be provided for the symmetric bifurcation point, cf. Thompson
and Hunt (1977).

4, FUNCTIONAL FORM OF EQUATIONS

In this Section, we shall consider any surface or beam structure whose behavior is
described in terms of generalized stress @, strain &, and displacement u. Our derivation will
provide an extension of the previous study by Haftka ef al. (1990), and parallels the analysis
of the previous section.

The equations governing large displacement and small strain response can also be
written in a functional form introduced by Budiansky. The strain displacement relation is
written as

e = L,(w)+1L,(w), (87
where L, and L, are first- and second-order homogeneous operators, respectively, in the
displacement field u. The variation of the strain is specified in terms of displacement
variation as

o6e = L;(6u)+L,,(u,ou), (88)
where L, is a symmetric bilinear operator, thatis L,(u,v) = L, (v, u), defined by
Ly(u+v) =L,(w)+L,(v+2L,,(u,v). (39)
In particular, (89) yields

L, (u,u) = L,(u). (90)

The linear stress—strain law is written as

6 =D(—¢), 91
where D is the stiffness tensor and & is the initial strain tensor. We assume that the structure
isloaded by a deformation independent load vector Af where 4is a load amplitude parameter.
The equations of equilibrium are written via the principle of virtual work as

gede = Mfedu, 92)

where e denotes a scalar product followed by integration over the structural domain
dos=ja'adV. 93)

We again consider the path parameter #, with eqn (4) for the response becoming
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u = v’ +iaAn+diAn* + -,
£ =8 +EAn+18An7 + -,
6 =0’ +dAn+16An’ + . 94)

Differentiating (87), (88) and (89) with respect to the path parameter we get

£=L,(W)+L, (uu),
¢ = D(e—&)+D@E-§),
Gede+aeL, (1,du) = ifedu. 95)

Differentiating (95) once more we get

§=L(@)+L, (ui)+L,@),
¢ = D(e—2)+2D(E—&) +DE—-&),
Gede+2deL,, (0,0u)+oeL, (i,ou) = ifedu (96)

4.1. Regular loading and stiffness sensitivity problems

As in the discrete case we can specialize these equations for the case that # is a load
parameter and for the case where 7 is a stiffness or imperfection parameter s. For the case
of a load parameter variation, eqns (95) and (96) will provide the loading path response,
namely

¢ =Lu)+L,(u,u),
o = D( —¢"),
o’ede+aeL, (v, 5u) = A'feduy, 97
and
¢ =Lw)+L, uu)+L,u),
6" =D(e"—¢&"),
c"ede+2¢ oL, (v, 0u)+oeL, (v, 0u) = "fedu. (98)

For the case of a variation of stiffness or imperfection parameter s we obtain the
transformation path specified by the equations for the first order sensitivity

& = Ll(us)+LH(u9us)a
¢, =D,(e—¢&)+De,
ag,edc+oeL (u,6u) =0, 99

and for the second order sensitivity

& = L i (uss) +Ll l(“s uss) +L2(“s)s
G, = Dss(s_'si) +2D:£.\' +Dassa
o, 002+20, 0L, ,(u,u)+oeL; (u,du) = 0. (100)

Let us note that the incremental loading problem (97) is associated with the minimum
principle of the incremental potential energy
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WOW,1) =3 —&")eD(e —&")+iseL,(w)— ' feu (101)
In fact, the stationary condition 6 W = 0 generates (97). In order to investigate the strong

minimum condition, consider any kinematically admissible field uj}, ;. Then, we obtain in
view of (97)

WO, ) — WP, ) = 1A¢ e DAe' + a0 iL,(An), (102)

where Ag’ = g, —¢’, Au’ = u;—u’. Assume that the incremental problem (97) satisfies the
stability condition for any u’, &

(g—&)oD(e —&")+oeL,(w) = A'feu > 0. (103)

Then, obviously the strong minimum of W (w’, ') occurs, and the right hand side of (102)
is positive definite. The second order loading problem (98) is associated with the minimum
principle of the second order potential energy, namely

W(4)(un’ ).//) — %(8” __Ei//) ° D(su__sil/) +2ﬂ',.L1 . (u/’ un)+ %G.Lz(u”) —A"feu". (]04)

So the stationary condition §W = 0 is equivalent to the last equation (98). The strong

"

minimum of W®(u’1”) occurs when (103) is satisfied for the second order states 6”, £” and
u". The incremental sensitivity problem (99) corresponding to the transformation path is
similarly associated with the minimum principle of the incremental potential energy

W (u,) = je,eDe,+ioceL,(u)+ Do, (105)

where the last term plays the role of loading. The strong minimum of W¥(u,) occurs
provided

g,oeDe,+oeLl,(u) = —Deog, >0 (106)

for all kinematically admissible states u, and ;. Similarly as for the loading path, the second
order potential energy corresponding to the transformation path is expressed as follows

W(S) (uss) = %em ® Dess + 265 L4 L 1 (usa u:x)+ %0' L4 L2(um)+ 2D58 L LN + szs o0&, (107)

and its minimum occurs when (106) is satisfied for the states u,, and &;.
So far we discussed the direct approach to sensitivity. In fact, after u,, z,, a,, and u,,
g, 0., are calculated, then the first and second variations of a functional G = G(u, s) can
be obtained as
G = Goy+GAs+1iGAs* + - -, (108)
where
G=G,eu+G,,
G =G, ouu+2G, eu +G,+G, ou,. (109)
In order to express the sensitivities in terms of adjoint variables, we impose constraints
following from the equations of the prebuckling path, (87), (91) and (92), thus considering
the augmented functional
G* = G(u(s),s) —c“ e [g—L,(u) — 3L, (u)] +&* (6 — D&+ Ds)
+Afoeu—ae[L,(u)+L,,(u,u)]. (110)

Differentiating G* and rearranging the terms we obtain
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G* = G.\'+Gu.us —a° eZ, _G.Lll(us’ua) —0;® [Ll(“a)+Ll l(“s “a)_aa]
+e,0(6,—De,)—e*oD,(e—¢). (111)
Equation (111) indicates that to avoid the calculation of prebuckling sensitivities we should
define an adjoint problem satisfying
¢’ =L,(u")+L;,(u,u%),
¢’ = D¢,
g‘edct+ael, (v, du) =G,edu. (112)

Then the terms containing u,, o, and &, will disappear, and the sensitivity is expressed as
follows

G* =G =G,—D,(z—¢) ez (113)

The second order sensitivity is derived by using du = du,, in (112c) and du = du’ in
(100c). Then with some algebra (109) yields
G=G, euu,+2G, eu,+G,—2D.2 08 —D,(s—¢)es
—20,0L,,(u",u,)—06“eL,(u,). (114)
4.2, Critical state sensitivity
At a critical point eqns (97) become singular and cannot be solved for the load-
incremental state. The buckling load satisfies the homogeneous form of these equations
g, =L,(u)+L;i(uu),
o, = D8 1
o,ede+oceL  (u,,ou) =0, (115)

where, as before, a subscript 1 denotes the buckling mode. Substituting du = u, into (97c)
we get

o’eg,+oeL, (W,u,) = feu,. (116)
Using (97b) and (115b) this becomes
g,0(¢—&)+oeL, (W,u) = ifeu,. (117
Finally, substituting éu = u’ in (115c) and subtracting from (117) we get
g0’ + 2 feu, =0. (118)
When the initial strain is independent of the loading, & = 0, and (118) is satisfied at a limit
load by A’ = 0. At a bifurcation point A’ # 0 and so we have feu, = 0. In the following we
limit ourselves to the case when &” = 0.
Limit point. At a limit point 4’ = 0, and so by comparing (97) and (115) we note that
w’ is a scalar multiple of the buckling mode u,. Its magnitude can be determined by selecting
the path parameter. For example, if the path parameter is selected to be one of the

components of u, then the corresponding components of u’ is equal to 1. Setting du = u’ in
(98c) we get
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c'eg’ +2¢'eL,(u)+oeL, (u",u) = 1"Teu. (119)

Similarly, setting 6u = w” in (97¢) and using (98a) we get
o'e(e’"—L,w)]+agel (u",u) =0. (120)

From (97b) and (98b) we note that 6" &’ = ¢’ e¢”, so that by subtracting (120) from (119)
we get

T (121

which gives us the curvature at the limit point.

Design or imperfection sensitivity can be calculated from eqn (95) by considering a
critical state path following limit points. Along the path we haves = 5,1 = A,,and D = D,.
Substituting du = u, into (95¢) and using (95b) we get

(Dé+D ~ D) eg, +o‘ oL (u,n,) = A, feu,, (122)

where the superscript ¢ denotes evaluation at the limit point. Similarly, substituting ju = 4
into (115¢) and using (115b) we get

Dsl.é+GC.L1}(“1,ﬁ)=0. (]23)
Subtracting (123) from (122) we get

D (g — i
A = _L(ﬁ__s)_.ﬂ (124)

feu,

We evaluate the second derivative in a similar manner, starting by setting du = u, in (96¢)
and using (96b)

D, —D g+2Dé+Dé)eg, +26eL,,(d,u)+o'eL, (ii,u) = A feu,. (125
Next we set du = ii in (115¢) and use (115b) to obtain
De o [é—L,(0)]+6°eL; (u;, i) = 0. (126)
Subtracting (126) from (125) we obtain

B (D& —~D, & +2D,é)ee, +Dg, oL, () +26 oL, (1, u,)

= 127
Ao fou, (127)

To evaluate (127) we need to solve (95) for u, & and ¢ at A = 4., where the system is
singular. We need one additional condition to make the solution unique. This is obtained
by first differentiating (115) along the critical path and setting du = u,

& =L;a)+L; (0u)+L, (u,0,),

6, = De,+Dé,,

é,e& +a, oL, (&,u)+deL,(u;)+o oL, (u,u)=0. (128)

Next we set du = i, in (115¢) and use (115b) to have
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Dz, o[, —L;;(d,u))]+geL, (u;,u,) =0.
We now use (128b) and subtract (129) from (128c) to get

D¢, ee,+De,oL,,(0,u,)+06,0L,;(1,u,)+deL,(u,) =0.

2087
(129)

(130)

Equation (130) is the additional scalar equation needed to supplement (95) at 4 = A..

Bifurcation point. For a bifurcation point, from (118) we have
fOl.ll = 0,
so that, from (122) and (123) we get

D,(z* ~¢&)eoe, =0,

(131)

(132)

and A, in (124) is not defined. To find A, for the bifurcation case we consider an energy

functional obtained by setting du = u,, e = &, in (115c)
E=o0,0¢,+ceL,(u,) =0.
Differentiating £ with respect to the critical path parameter we have
E=d,08,+06,05 +deL,(u,)+26°eL, (u,,i,) =0.
We also have, by differentiating (115a) and (115b)

é =L,(u,)+L, (0u)+L @ u),
dl = D361+Dé1.

Using (135) we transform (134) into

E=26,0[L,(,)+L,,(u,4,)]+26, 8L, (,u,)+D,, 0z, +60L,(u,)

+20'C.L1](“1,‘:ll) = O

Next we use (115¢) with du =a,, ¢ = L ,(1,)+L,,(u,a,) to obtain
g e[L,(@)+L,,(u,0)]+e6eL)(u,u,) =0,
so that we can simplify (136) to
E=2¢,0L,,(i,u,)+D,¢, 02, +d0L,(u,) =0.
Along the critical path both the load and stiffness vary simultaneously, so that

. ’c <
u=Aiu°+u,

6 = A0 +at.
Substituting from (139) into (138) and solving for A, we get

_ D,e,0¢,+20,0L;,(u,u;)+a;0L;,(u,)
20,0L, (w‘,u;)+0"eL;,(u,)

A‘cs =

(133)

(134)

(135)

(136)

(137)

(138)

(139)

(140)

Equation (140) requires the calculation of the sensitivity of the prebuckling state with
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respect to the stiffness. To avoid this calculation we can use an adjoint method by appending
the equations of the prebuckling path, (87), (91) and (92), to E, with adjoint fields acting
as Lagrange multipliers. That is, the augmented function E* is

E* = E+o°e[s—L,(u)—3L,(u)] +¢&*e[6—D(e—&)] + Afeu’
—oeo[L,(w)+L; (n,u?)] =0. (141)
Differentiating (141) and using (138) we obtain
** =26, eL,,(8,u,)+ Dz, 0¢, +deL,(u,)
+o‘e[é—L,;(0)—L,, (u‘, a)] +&" @ [6 —D,(¢ —&') — Dé]
+/feu’—de[L (u)+L, (u,u")]—a‘oL, ,(4,u) =0. (142)

We now substitute (139) for i and ¢¢, and use (97) to eliminate some of the resulting
terms

E* =26,eL, (u,u))+Dg, oz +o;eLy(u)+/,[20,0L, (u”’,u;)+0 oL,(u,)]
+o‘e e — L, (u) —L,,(u’, uj)] +¢" @ [6] — D,(e° —¢&') — De;]
—o;e[L,(0)+L,,(u’,u’)] ‘oL, (uj,u’) = 0. (143)

To eliminate all derivatives of prebuckling response with respect to s we require the adjoint
state to satisfy

g = Ll(u“)+L11(u",u“)—Lg(ul),

o’ = D¢,
c'ede—20 0L, (u,0u)+0"oL,, (u*,du) = 0. (144)
Then (143) becomes

E* =D 02, + 4,26, 0L,,(u,u;)+6 o L,(u,)]—D,(e — &) 02 = 0, (145)
so that

D,(e—¢&)ee’—D,g, o¢,

Ay = ‘ : )
¢ 26,0L,, (W u)+o eL;,(u,)

(146)

The sensitivity formulae (124), (127) and (146) are equivalent to the respective formulae
(28), (29) and (68) derived in the previous section by starting from the potential energy function.
Examples of the application of these formulae are presented in Haftka et al. (1990).

S. SENSITIVITY OF NON-POTENTIAL DISCRETE SYSTEMS

In this section, we shall discuss the case of discrete structures for which the tangent
stiffness matrix is not symmetric. This case usually occurs for non-conservative loads such
as friction or fluid pressure acting on structural elements.

The equations of equilibrium are not generated by a potential energy functional and may
be written as

f(u,s) = ip(s), (147)

where 4 denotes the proportional loading amplitude, s is a design or imperfection parameter,
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uis the generalized displacement, and f and p denote the internal and external loads, respectively.
Differentiating (147) with respect to a general path parameter  we get

Ju+fs = ip+ips, (148)

where J is the Jacobian f, (also known as the tangential stiffness matrix). Differentiating once
more we obtain

Jii+ J(u, 0)a+ 2570+ .5+ 1,82 = Ap+245p, + Ap,,s2 + 4p,5, (149)

where J is the matrix

Jua) =3 5-;,5 8 (150)

i i

We can specialize these equations for the case when the path parameter is a loading parameter
and when the path parameter is the stiffness parameter s. For the former, (148) and (149)
become

Ju' =1'p, (151)
Ju'+J'w = 1"p, (152)

with
J = Ju,w). (153)

For the case when s is the path parameter we get

Ju,+f, = ip,, (154)
Juss + qus + 2Jsus + fJS = lpssa (1 55)
J =J(u,u,). (156)

At a critical point J becomes singular, and (151) cannot be solved for the load-
incremental state. The buckling mode u, is the right eigenvector of J

Ju, =0. (157

When the tangential stiffness matrix J is not symmetric we need also the left eigenvector
v, of J which is, in general, different from u,, and which satisfies

viJ=0. (158)
Premultiplying (151) by v! we obtain
Avip=0. (159)

Equation (159) is satisfied at a limit point by A’ =0, and at a bifurcation point by
T
le = 0.

At a limit point A’ = 0, and so by comparing (151) and (157) we note that u’ is a scalar
multiple of the eigenvector u,. Its magnitude can be determined only by specifying the path
parameter. For example, if the path parameter is the jth coordinate, then we have the extra
equation «} = 1 to permit us to calculate u’. Premultiplying (152) by v] we get
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Ty o
/1” _ vl‘l u
= 7 .
vip

(160)

Analytical computation of J’ is tedious, and may be difficult to implement. Instead it
is suggested that a semi-analytical method may be useful.

To implement the semi-analytical approach consider a product of the form J'z for a
constant vector z where

e S gy _9dfof \_dd
Jz _Eﬁ(h) =4 <6u z) —Er}de[f(ll-i-el)]mo- (161)

If the structural analysis package that we use calculates the tangential stiffness matrix,
J, we can make use of the first equality of (161) and have

~ J(n+An)—J(n) .

J,ul Ar] Is

(162)

where 1 is the loading parameter. If the tangential stiffness matrix is not readily available,
we can make use of the third equality

J'u

L d [f(u+eu|)—f(u)}

= 4 p (163)

where ¢ is a small step-size parameter. Equation (162) requires that we find the tangential
stiffness matrix at two close values of . Equation (163) requires only the calculation of the
internal loads in the structure for a given displacement field. The bracketed term in (163)
is calculated by incrementing u by a small multiple of the buckling mode u, and recalculating
the internal load f. The derivative with respect to # is obtained by finite differences by
repeating the calculation at n+ An.

Design or imperfection sensitivity can be calculated from (148) by considering a critical
state path that follows limit points. Along the path we have s = #, 4 = 1, so that (148)
becomes

Ju+f, = A,p+Aip,. (164)
Premultiplying by the left eigenvector v] we obtain

T —
jy = DG AR (165)
vip

This derivative may also be conveniently implemented by a semi-analytical approach

as
T —_
h = vl[r(s+A~;) r(s)]’ (166)
Asvip
where
r=f—Jp (167)

is the force residual. Note that r(s+ As) is calculated without changing the load or dis-
placement field obtained at the nominal point s. Equation (149) is specialized for the critical
path as
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Ji+ (T4 27 )0+, = AepsP + 226,05 + AP (168)

Premultiplying by v] we arrive at the formula

_VI(TH 27+, — 24,V P — AV Py

"chs - (] 69
vip )

To evaluate (169) we need to solve {164) for i at A = 4, where J is singular. We need
one additional condition to make the solution unique. This condition is obtained by
differentiating (157) along the critical path to obtain

Ju,u, +Ju, +Ja, = 0. (170)
Premultiplying (170) by v} we get

viJ,a)+viJu, =0, Qa7

which is the additional equation required to calculate a.
For a bifurcation point v]p = 0, and by premultiplying (154) by v] we see that both
the numerator and denominator of (165) are zero, and 1., cannot be calculated from (165).
Note that it would appear that we can get the numerator of (165) to be zero even for a
limit point in exactly the same way. However, for a limit point there is no solution for u,,

so that the right hand side of (154) is inconsistent with the singular system.
To calculate the sensitivity of the bifurcation load we define an energy function

0=E=viJu +u"(f—ip), (172)

where p is a Lagrange multiplier vector used to enforce prebuckling equilibrium. Differ-
entiating (172) with respect to the critical path parameter we get

viJ(ug, 6,)u, +v]Ju, +p"(Ja, +f,— A.p—Aip) =0, (173)

where u, denotes the prebuckling state. Along the critical path both the load and the stiffness
vary simultaneously so that

i‘(} = icsll%“f'“(m (174)
so that (173) may be written as

'{csv{j(u%a “’O)ul -I—V{j(ll%, u()s)“l +VTJ3“1 +”T{)'cx*]“10 +J“Os +fs -/lcxp_'lcps} =0.
(175)

We now have two options for calculating 4, from (175). We can set g to zero and get

_ v,T[j(uf,, “03) +Js]u1
v{j(uib u:))“l

Aes = (176)

This form requires the calculation of the prebuckling sensitivity u,,. Instead we can
define g to zero out the coefficient of u,, in (175)

ViN@§,u)+p"T =0, am

where
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<

oJi;
Nij(“mul) =ijulk- (178)

Then, from (175) we get

viJa, +p'(f,—A.p,)
Aes = — 55— - . 179
VI (5, woyu, + p7 (Juy—p) (179)

The term v{ N in (177) appears to require much algebra and computation for implemen-
tation. However, from its definition we have

gy
(VIN), = Vi3 Luss, (180)
so that
d J(ug+ev,)—J(u;
VIN = ul - [J@i+ev))]lo-o = uf (W Fev,) = o). (181)
e e
When J is symmetric, then u, = v, and u} J(u5) = 0. Furthermore
. d
Ju, = &‘lf(u+e1u1)lel=0 (182)
$0
2
vIN)T = %2 e flu+eu, +em,]. (183)
1

Equation (181) shows that the term can be approximated with two evaluations of the
Jacobian, while (183) shows that for the symmetric case no evaluation of the Jacobian is
necessary.

6. EXAMPLE

6.1. Example 1: sensitivity of a redundant beam structure

The first example is a redundant beam system where the prebuckling state depends on
the stiffness distribution. The axial force N and the bending moment M are the generalized
stresses, with the axial strain ¢ and the curvature x as the conjugate generalized strains. The
strain displacement relations (87) now have the form

3=Ux+%W§ =e+'}’, K= —Wy (184)

where v denotes the axial displacement, w the lateral displacement, and the x-subscript
denotes differentiation with respect to the axial coordinate along the member. Hooke’s law
is

N=EA(~¢), M = El, (185)

where EA and EI are the extensional and fiexural stiffnesses of the member, E, A and I are
Young’s modulus, cross-sectional area and moment of inertia, respectively, and &' denotes
the initial strain.

The equation of equilibrium (92) now becomes
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li
Z[ (Mdx+ Née) dx, = Aqe du, (186)
i JO
where /, is the length of the ith beam in the system. The incremental form (95c¢) is

L .
Y f (Mdk + Née+ Nw.dw,) dx; = Aq- du. (187)

0

For the prebuckling calculations it is typical to neglect the nonlinear term y in the strain
displacement relation (184). As a result, the prebuckling response is linear in the load
amplitude 4

M=AM+M', N=IN+N| (188)

where M’ and N’ are the stress resultants due to initial strains, and where M” and N’ satisfy
a linear equation corresponding to (97c) with # = 4 and the L;, term neglected

L
¥ f (M’ S+ N’ 86) dx, = qe du. (189)
i JO

The buckling mode equations (115) become
&y =uxl+wwb Ky = —Wier, Nl =EA815 M} "—:EIKI)

&
ZJ (M ,6x+ N,d¢+ Nw,,dw,) dx; = 0. (190)
i JO

The second term in eqn (190c) is often neglected because it is zero when the prebuckling
state is momentless.

For this example we assume that the buckling is of the bifurcation rather than limit-
load type. This occurs when the prebuckling state is momentless or when the prebuckling
state has some symmetry which is destroyed by buckling. In this case the sensitivity of the
buckling load is given by (140) which becomes

4
z J [(EI)SK% + {EA)SSEl + 2N1 wxswx + Nsw.v%l] dxi
i JO

A’cs = - (191)

Ii
Zj QN wow, +N'wl)dx,
0

I3

If, as is commonly done, the prebuckling bending w and buckling mode axial response
(N, ¢,1) are neglected, then eqn (191) takes the more familiar form of

A
Z£ UEDx}+ Nowi 1 dx,

i
lcs:: -

(192)

II
Zj N'w?, dx;
i JO

Equations (191) and (192) require the calculation of the derivatives of the prebuckling
response (N and w,,). The adjoint method permits us to avoid this calculation. The adjoint
fields satisfy (144) which become

SAS 31:15-F
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2
& =i wonwi—wgy, K= —wi, N'=EAs M°=EI",

;r'
Y f (NSe+ M0k —2N w, éw,+ Nwidw ) dx, = 0. (193)
i 0
Then the buckling load derivative is given by (146) as

) J [(BA) ()" + (D e = (EA)8% — (ED 3] dx

Ay (194)

I!
ZJ‘ (2N|W;Wx1 +N,W‘3|)dxi
i JD

Neglecting prebuckling bending and buckling mode axial response, (193) and (194)
become

e =vi—-w}, k= —wi, N°=EAe, M*= EI’,

&

ZJ (NSe+ M8k + N'wSw,) dx; = 0, (195)

and
Il
Y J [EA) (& —&)e" + (EDk k* — (EA) ) dx;

i W0

A=

(196)

zl
ZJ N'w? dx;
i WJO

As an example, consider a simple two-bar structure (Fig. 3), loaded through a rigid
plate moving vertically. The structure is subjected to load p and temperature differential
AT applied to bar 4. The initial strain ¢ = aAT in bar A generates the following self-
equilibrated force system

AAAB
A+ Ay

AqAp
Ag+Ag’

i = —aEAT N = aEAT (197)

where o 15 the coefficient of thermal expansion. The external load p generates member forces

Ag
pA,,+AB’

N, =N, = Ny =iNj = i=p. (198)

——p——A—
A+ A

As the bars are hinged at both ends, the buckling mode takes the form u, =0,
w, = sin {rx/l), and the critical loads of bar 4 and bar B are

4 b

3 —F o

3 =/ z‘-’:‘F::::_’-:!_f

) -aT

1 2
EAs A, |l
oL 2 fEJ;
F77T I’f- Il
al b}

Fig. 3. (a) Two bar structure. (b) Adjoint structure.
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nEl, A+ Ay

A'cA = 12 AA —aEATAB,
2EL, A+ A
PR e A; 5 L 4EATA,. (199)
B

Assume that AT > 0 so that bar 4 buckles first. We also assume the moment of inertia
to be related to the area as

I=p44", (200)

where B is a constant factor and n depends on the cross-sectional form and its variation.
Then

i, _ m’El, |:n(AA+AB) B A,,]

oA, I? A3 A2
0A. w°EI,

Equations (201), obtained directly, can now be used to check (192) which becomes

‘oI, , ON,
oA, ﬁ(EEK‘JrEW"‘ e

0A, ] ’
NlAwﬁl dx,
0
‘oN,
o, L a4, W19

E =———. (202)
:{w)%l dx,
0

The derivatives 0N ,/0A, and dN,/0A in (202) need to be evaluated at A = A,, and
from (197) and (198)

N, A5 ¥ Ads n°ELA;

—— = —aEAT - s=— -,

0A 4 A+ A (4,+Ap) A (A +Ap)l

N, ( A, )2 A,y < A, ) 2,

——— = —aEAT = —aEAT .

0Ap * A4+ Ap +AA+AB x A+ A +(AA+AB)12 (203)

With member 1 buckling

w —sin<"—x “Teos (™), k=" sin (™ 204
1= ) wx]_l 0S8 / ’ Kl_l_zsul Ta ( )

and from (198)

le'w2 dx, = v A 205
0 AVx] A~ 21A3+AA ( )

Also
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Lol n'Enl

E-tutdx, = — 1

L dA, T T 24,07

flaNA - n*El,
WodXy = ———F——5%
004, TN T DA (A, + AT

‘ON, n*El, —n’EaATA l?
dx, = "4 " = 240
J Y 2A + A0 (206)
Substituting from (206) into (202) we verify (201).
The adjoint method (196) becomes for our example

! . ol
o L [E(s; —oAT)e4 —E ﬁ k¥ |dx,

A, I
Nw? dx,

0

I
Eegeg d
o, J:) pEp GXp
e (207)

04, =
Nyw? dx,

0

From (195) the adjoint field satisfies the strain displacement relation

2
nx
€4 = Ui —W_z,q = Uiy — 27 cos’ e

(208)

The second term on the right hand side of (208) is a variable initial strain term, which has
the same influence on member forces as a constant initial strain of the magnitude

L ['n mx n’
"= = —dx = 5. 209
€ llecos ldx 57 (209)
The resulting axial member forces are
- A4 ‘E A4
Ne = —Fg 2Aa%E T2 Aa%s e N (210)

A+A, 207 A+Ay
The corresponding strains are

N¢ n®  Ag N4  m* A,
= - == R 21
EA, 20 A+ A, EA, 21" A+ Ay

To evaluate (207) we also need the strains in members 4 and B at the buckling load:

N, A, a1
¢ = — = - — - — - e AT
&4 EA, +aAT aATAA—kAB EA, 4, +o
2
I
= aAT— nz A_’ (212)

{“a,
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free

free

a) b}

Fig. 4. Simply supported cylindrical shell with a central point load. (R = 2540 mm, L = B = 504
mm, E = 3105 N/mm?, v = 0.3, 7 = 6.35 mm).

. SN VI S
T F4, A +A, E A, +4,
?le,g
= - . 213
aAT 174, 213)
Naturally, ¢, = ¢5. Substituting into (207) we get
! 72l n? Ay n*El,

€ @ - o T e 1: N 214
ﬁ)m" wdDesdx, = —Epy ( WA A) S A Ayt @9

which is the same as | f) (ON (/oA w2, dx, in (206). Since the other terms in (J4./04,) in
(202) are the same as in (207) we have confirmed that the adjoint and direct method give
the same result for 84,/04,. Similarly for 84,/04; in (207) we have

215)

anI,,) n? Ay n*El,—n'EaATAL?

i
J Eeyep dx, = (E“AT“ A, )20 A4 4, A+ AnD

0
which agrees with the third integral of (206).

6.2. Example 2 : shallow cylindrical shell subjected to point load

The second example is a shallow cylindrical shell simply supported along two straight
edges and loaded by a central load p (see Fig. 4). The shell parameters are R = 2540 mm,
L = B= 504 mm, E = 3104 N/mm?, y = 0.3 and the thickness ¢ = 6.53 mm.

This example, taken from Haftka (1993) is intended to demonstrate the implementation
of (166) with a general purpose finite element program.

Equations (165) and (166) for the derivative of the limit-load have to be implemented
right at the limit-load itself. However, it can be difficult to obtain structural response exactly
at the limit-load, so that the calculation must be implemented away from the limit-load.
Therefore, the derivative based on (166) was calculated for several points near the limit-
load along the prebuckling path. Derivatives with respect to the thickness and Poisson’s
ratio are presented in Table 1. These are given as logarithmic derivatives
oA, oé(nld) s dA s

ds  d(ns) A ds A Fes (216)

One advantage of logarithmic derivatives is they show the underlying functional
relationship. Thus, if 4, is proportional to s then d'Ac/ds = n. Table 1 shows that the
buckling load is approximately proportional to ¢2. The value of about 0.1 for the logarithmic
derivative with respect to v is consistent with a proportionality to (1—v?)~ "2 The log-
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Table 1. Logarithmic derivatives of limit-load amplitude with respect to
shell thickness and Poisson’s ratio for cylindrical shell

A 104, v 04,
A A Ot 2. ov
FD SA FD SA

0.9996 2.067 2.073 0.1095 0.1099
0.995 2.103 0.1136
0.973 2.180 0.1216
0.928 2.294 0.1325
0.885 2435 0.1454

arithmic derivative of this term is v2/(1—v?) = 0.099 for v = 0.3. In Table 1 the semi-
analytical (SA) derivative form (166) is compared to a forward-difference (FD) derivative.
The results indicate that substantial error can occur if the derivative is calculated too far
away from the limit load.

7. CONCLUDING REMARKS

The present paper provides a variational approach to first and second order sensitivity
analysis of non-linear structures undergoing deformation in regular and critical states. The
direct and adjoint approaches were discussed. It was shown that there is a close connection
between post-critical deformation analysis and sensitivity. In fact, for the case of symmetric
buckling, the adjoint fields are identical to second order post-critical fields following from
the asymptotic expansion in terms of deformation parameter. It is believed that the present
approach will prove useful in analyzing structural redesign or optimization, and also in
assessing the effect of damage or structural imperfections on the critical load value.

One important issue is the sensitivity of post-critical response to variation of structural
parameters. This problem will be discussed in a separate paper.
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