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Abstract-A general design sensitivity formulation is introduced for non-linear elastic structures
reaching critical equilibrium states, A discretized formulation is considered first and the sensitivity
analysis is discussed for regular and critical states including analysis of post-critical behavior. Next,
a variational approach is presented for beam and surface structures for which generalized stress
and strain operator formulation is applied. The formulae for sensitivity of bifurcation loads are
derived in terms of adjoint fields which are shown to be equivalent to post-buckling fields in the
case of symmetric bifurcation.

I. INTRODUCTION

When a non-linear elastic structure is subjected to increasing external loads, it usually first
passes through a regular deformation range associated with stable and unique response.
Then the structure often reaches a critical state such as a limit or bifurcation point. Two
related problems of interest are the immediate post-critical behavior and the variation of
critical load with structural or imperfection parameters. For some cases, the character of
critical point is not changed when small design variation occurs, but the critical load value
is modified. In other cases, a design variation or geometric imperfection may induce
disappearance ofa critical point or change of its character. Such general questions ofdesign
sensitivity of critical equilibrium states will be discussed in the present paper. Our analysis
will follow the previous work by Mraz (1987), Szefer et al. (1987), Mraz et al. (1985), Mraz
and Haftka (1988), Cohen and Haftka (1989), Haftka et al. (1990), and Dems and Mraz
(1989) on sensitivity of buckling loads and vibration frequencies of plates and shells with
respect to variation of stiffness parameters and shape. A general variational approach to
sensitivity analysis was presented by Haftka et al. (1990) and applied to surface structures
within a generalized stress and strain formulation. The explicit sensitivity expressions were
derived for variation of the critical load factor at the bifurcation point and of the vibration
frequency. The close relation between design sensitivity and post-buckling analyses was
indicated.

In Section 2, the design sensitivity of conservative discretized structures will be dis
cussed in the regular case. In Section 3, the sensitivity of limit and bifurcation points will
be considered. In Section 4 the variational approach will be applied to surface structures,
thus paralleling our analysis of discretized systems. Section 5 is devoted to sensitivity
of non-conservative discrete systems, and Section 6 discusses sensitivity of some simple
structures.

2. SENSITIVITY ANALYSIS IN A REGULAR CASE

Consider an elastic discretized structure whose deformation is described by a set of
generalized coordinates qj and whose potential energy has the form
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V= V(qbA,S), k = l, ... ,n, (1)

where ). denotes the proportional loading parameter, and s is a design or imperfection
parameter. The equilibrium equations are generated from (1)

av
-a = Vj(qbA,S) =0, i=l, ... ,n.

qj
(2)

Consider the equilibrium path in the n+ 1 load-configuration space (Fig. 1). Let the
progression parameter along this path be 1], so that q = q(1]), A= A(1]). Then, at any
equilibrium state qO(1]o), A°(1]0)' we can write

qj = q?+ql11]+!qj~n2+ ... ,

Ie = AO+A~1]+!X~1]2+ "', (3)

where ('Ii, qh"" A, X, ... denote derivatives of qj and Awith respect to 1] at q = qO, A= AO,
1] = 1]0, and ~1] = 1]-1]0'

Equations (3) specify the load-deformation process in the vicinity of a considered
equilibrium state q?, Ao. Consider now the structural transformation process generated by
the variation of s. This process can be conceived to occur separately or simultaneously with
the deformation process. It can therefore be assumed

(4)

where s, s, ... , denote derivatives of s with respect to 1] at 1] = 1]0' For load-deformation
processes we set s = so, S = S = ... = O. On the other hand, for transformation processes
we set A= A0, A= X= ... = O. The progression parameter could be any generalized coor
dinate, for instance, 1] = q b or load factor, 1] = A. For transformation processes one can
set 1] = s, and then s= 1, s = s = ... = O.

Differentiating (2) one obtains a set of identity relations expressing equilibrium
conditions associated with variation of configuration, loading and structural parameters,
namely

and the third-order perturbation equation has the form

load defor motion path

"u
r<...I.-"" --+--;;i --<O~

q

0)

a

b)
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Fig. I. (a) Load-deformation path of structure passing through limit point critical state path and
transformation path. (b) Sensitivity diagram.
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V;jk/tlAktl/+3 V;jktl/jk+ Vijqj+3 V;jkAtljtlkA+3 V;jksqAkS+ 3VijAihA+3 V;jAi

+3V;pA)'+ 3Vijsqjs+ vuA:+ V;ss+ 3V;j).;.tl jA2+3V;jsstljS2 +6VijAStljAS

+3V;uAX+3V;ssss+3V;;.).:V+3V;ASAS+3V;suA2S+3V;SSAAS2+ V;wA3+ V;sssS3 = O. (7)

This set of perturbation equations allows for study of both deformation response, identi
fication of critical points, and also of sensitivity to imperfection and design variations.

2.1. Incremental load-deformation response
Let us first discuss the regular case and assume that

(8)

With s = 0, eqn (5) provides the incremental equilibrium conditions along the load
path.

(9)

where vij(q2, A0
, SO) is the tangent stiffness matrix, and where to distinguish the derivatives

with respect to loading parameters from other derivatives used in this paper, we denote
them with primes instead of dots. When Vij is positive definite, the incremental problem (9)
is associated with the minimum principle of the incremental potential energy function

(10)

In fact, the stationary condition for W leads to (9), that is

(11)

where bq; denotes a kinematically admissible variation. The absolute minimum of Woccurs
in the class of kinematically admissible q7, thus in view of (9)

(12)

The second order incremental energy associated with (6) can be constructed in a similar
way with the minimum condition specified by (12).

2.2. Incremental transformation response: sensitivity analysis

2.2.1. Direct approach to sensitivity analysis. Consider now the transformation path
occurring at fixed A but with varying design or imperfection parameter s. We denote the
derivative of q with respect to s by q., and then from (5) it follows that

The solution of (13) provides the sensitivity q•. Consider now an analytical function

G = G(q, s) = G(q(s), s).

The variation of G along the transformation path can be presented as follows:

where

(13)

(14)

(15)
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(; = Gjqsj+G" G= Gijqsigsj+ 2Gisqsi+ Gss +Gjqssj, ... , (16)

and qssj, the second derivative of the displacement with respect to s, can be determined from
(6), specialized to the case of 1] = s

(17)

2.2.2. Adjoint approach to sensitivity analysis. Consider now the adjoint method. We
derive the variation of G due to variation of s subject to the equilibrium constraint (2).
Assuming Ais constant, the augmented function is

(18)

where II is a Lagrange multiplier vector. The variation of G is expressed as follows:

In order to eliminate the (computationally expensive) term qsj in (19) we require the adjoint
structure to satisfy

(20)

which requires a solution with the tangential stiffness matrix Vij' Now the first order
sensitivity G can be expressed as

(21)

Instead of direct determination of qsj from (13) followed by calculation of (; from (16), we
may use the adjoint state J-lj from (20) and calculate (; from (21). The adjoint method is
efficient when we need the derivative of G with respect to many variables, since only one
adjoint solution is needed. The expression for G in (16) requires the calculation of the
second derivative field qss' Using the adjoint method we can eliminate this term. We start
by specializing (6) to the transformation path and multiply by J-li to get

(22)

Using (20), the last term in (22) is equal to Gjqssj, and then Gfrom (16) may be written as

(23)

3. SENSITIVITY ANALYSIS FOR CRITICAL STATES

Consider now a critical state satisfying the condition

Vijq Ij = 0 or det [VrJ = 0, (24)

where qlj is the eigenvector of Vrj associated with the zero eigenvalue (assumed to be a
simple eigenvalue). Multiplying (9) by qlj we obtain

(25)

so that either V~Aq Ii = 0, or A' = 0, at the critical state. The first case corresponds to
bifurcation and the second to limit point. The values of the potential energy and coordinates
at the critical state are denoted by the superscript c and the critical load path derivative is
A;..
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3.1. Limit point sensitivity andpost-critical response
For a limit point we have A~ = 0 as well as (24). From (9) we see that q' is a scalar

multiple of the eigenvector qh and its magnitude can be determined only by choosing a
path parameter. For example, if the path parameter is chosen to be the jth coordinate, qj,
then we have an additional equation, qj = 1, which together with (9) defines /bq'. Setting
oS = 0 in (6) and using primes to denote load path derivatives we get

(26)

Multiplying (26) by q; and evaluating at the limit point (A = Aeo A~ = 0) we obtain with the
aid of (9)

(27)

Design or imperfection sensitivity can be calculated from (5) and (6) by considering
the critical state path following limit points. Along that path we can have s = " so that
oS = I, S = 0, etc. However, now both A and s change simultaneously. Multiplying (5) by
q Ii we can solve for 1. which is the sensitivity of Ae with respect to s

Similarly, by multiplying (6) by qli we obtain

(28)

Aess = X=
(Vijkqjq~+2Vijlqj1.e+2Vijsqj+2Vf;..,1.e+ Vf111.;+ V~s)qli

Vflqli
(29)

To evaluate qe appearing in (29) we need to solve eqn (5) which is singular at A= Ae •

Equation (28) provides the consistency condition guaranteeing that (5) has a solution at
A= Ae • However, we need one additional equation to make the solution of (5) unique. This
extra condition is provided by differentiating (24) along the critical path to obtain

(30)

Multiplying by qli we have

(31)

which together with (5) provides the solution for qe. Equation (30) can also be used to find
qlj, the derivative of the limit-load eigenvector. However, this equation is also singular and
must be supplemented by another relation derived from the normalization condition for
the eigenvector. If that condition is

(32)

where Tij is a positive definite matrix, then by differentiating (32) we obtain

(33)

which is an orthogonality condition on ql'
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3.2. Bifurcation point: post-critical behaviour
Consider now the bifurcation point for which the following conditions are satisfied

Vijq Ii = 0, Vf.<q ii = 0. (34)

We denote the generalized displacements along the fundamental loading path by qo,
and those along the post-critical path by q, so that after bifurcation

(35)

where '1 is the post-critical path parameter. We assume that qOj is evaluated at the same
load as qj which brings in an indirect dependence of qOj on '1. This is

(36)

where primes denote derivatives of the prebuckling state with respect to the load. The
equations needed to obtain q'Oj and q/~j are obtained from (5) and (6) by setting the path
parameter to be Ie

V~jq'Oj + Vf.< = 0,

V~jq'~j+ Vfjkq'Ojq'Ok +2Vjj.4oj + Vfu = o. (37)

Since Vij is singular, q'Oj cannot be completely evaluated from eqn (37a), and an additional
condition is required. This is obtained by multiplying eqn (37b) by q1i

(38)

To find qf we substitute qj at 11'1 = 0 from (36) into (5) with s= O. Using (34) we get
Vfjq~j = 0, which indicates that qf is an eigenvector of Vfj , so that it is a scalar multiple of
ql' Since ql is of indeterminate magnitude, we write

(39)

where ii i is the eigenvector q 1 normalized to unit magnitude, and (Xc will depend on the
choice of '1, as discussed later in this section. In order to derive the equation specifying q2j,
let us write (6) for the post-critical path, setting s= § = 0 and using (36) with 11'1 = O. We
obtain

(40)

We now use (37) to obtain the equation specifying q2j, namely

(41)

where we have made use of the symmetry Vijk = V~kj'

Multiplying eqn (41) by q ii and solving for A., we get

(42)

Using (39), we can write (42) as



where
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A = Vfjkiiliii,ihk

B = -(VfjkiiliqoA,k+ VijJ.iiliiilj)·

2077

(43)

(44)

Assume now that 17 represents the post-critical path length traced by generalized
coordinates. Using (36a) and (39), we have

[ (A)2 A J1/2
= IY.c q~iq'Oi 2B + 1+ Bijliq~i = 1

where (43) was substituted into (45). Now, (45) provides

[ (
A )2 A J- 1/2

IY. c = q~;q'Oi 2B + 1+ Bijliq~i .

Alternatively, one may select the coordinate ql as a path parameter. Then, we have

and

(45)

(46)

(47)

(48)

When 17 represents the total path length in the n+ 1 dimensional load-configuration space,
then

(49)

and

(50)

A more detailed discussion of evolution through critical paths can be found, for instance,
in Riks (1979), Kouhia and Mikkola (1989), and Flores and Godoy (1992).

Equation (50) is useful for asymmetric bifurcation. For symmetric bifurcation
Vfjkqliqljqlk is zero and we need to use q2j to evaluate ,t from (7) specialized to the post
critical path

Vijk,qAkq, +3VijkqAk + Vijqj+3 VijkJ. qAklt +3VijA)c+3 VijJ.q)'c

+ VfJ.J:c+3VijJ.;.ljj,.{:+3VfJ.J.,tA.~+ Vfw,.{: = O. (51)

The corresponding equation for the prebuckling path with A. as the path parameter is

We start the process of evaluating Xc by the evaluation of qOj from (38), Since Vij is

SAS 31:15-E
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singular we need an additional condition, obtained by evaluating (52) at the critical point
and multiplying by qli

(53)

Next we substitute from (36) into (51) multiplied by q Ii and evaluate it at the bifurcation
point

Vijk/q 1i(J'cqOj +q lj)(.tqOk +qlk)(.·t qo/ +ql/) +3Vijok qli(J,c qOj +%o)(A; q~k + J..:qOk +q2k)

+3Vijk;.Acq li(Acq(lj+%)(Acq~k +q Ik) +3Vij,l q Ii(A; q'Oj+ ;,:q~j +q2j)Ac

+3V~j,lqli(,icqoj+qlJJ..:+3Vijuq1j(AcqOj+q1j)A;+3vt:v.qJjAX+ Vfwq1jj} =O. (54)

We subtract A; times (53) and 3A):q1j times (37b) to obtain

njkM1jq ljq lkq 1/ +3tq Iiq~A lkq 1/+3A;q Jiq~jq'Okq 11)

+3Vijk(Acq liq'Ojq2k +A; q li%q'Ok +J..:q liq 140k +q liq Uq2k) +3Vfjk;.Ac(2AcqIiqOjq lk +q liq Ijq lk)

+3Vij,lqliq2j,t +3Vij,lqliqWtc +3Vij,uqliq IjA; = 0, (55)

so that

x = _ A+BAc+CA;
c 3(Vij,lqliqlj+ VijkqliqljqOk)'

where

A = Vfjk/qJjqljqlkql/+3njkqJjqljq2b

B = 3Vijk/ql4oj qlkq 1/+ 3VijkqJjqOjq2k +3Vijk,lqliq Ijqlk +3Vij,lqUq2j.

C = 3njk/q IiqOj q'Ok q1/+ 3VijkqUqjjq'ok +6VijUqliqOjqlk'

For the symmetric bifurcation point we have Ac = 0 and (56) becomes

(56)

(57)

(58)

The formulae (56) and (58) coincide in particular with those derived by Thompson and
Hunt (1973) who considered the post-critical response using a local coordinate system
sliding along the fundamental equilibrium path. The present derivation is presented in
the global coordinate system and could be reduced to a local system by setting
qOi = q'OJ = q'[li = O.

3.3. Bifurcation point: sensitivity analysis
Assume that the design variation occurs such that the bifurcation point is preserved

(rather than the more common situation where it becomes a limit point) and the critical state
path AB from the bifurcation point connects the consecutive bifurcation point satisfying (34)
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Fig. 2. (a) Load deformation path of structure passing through bifurcation point and critical state
path for regular case. (b) Sensitivity diagram forregular case. (c) Load deformation path ofstructure

and critical state path for singular case. (d) Sensitivity diagram for singular case.

(Fig. 2). Such a situation can occur, for instance, due to a plate or shell thickness variation
or a laminate fiber angle modification in a composite structure that does not destroy the
symmetry responsible for bifurcation.

For the critical state path we have from (5)

(59)

Since at the bifurcation point conditions (34) occur, then the regular sensitivity case,
for which Acs is finite, requires that

(60)

Multiplying (59) by the eigenmode qli' one obtains formula (28). However, now both
denominator and numerator vanish at the critical point, and to assess Acs one has to apply
higher order equilibrium and critical state conditions. Consider evolution of the bifurcation
point due to design variation. Along the critical path, we have

(61)

where the first equation expresses the critical state condition and the second is the equilibrium
condition. Considering the second equation (61) as constraint set on the critical state
condition and introducing the Lagrange multipler /li' we can introduce an augmented
critical condition

(62)

Differentiating (62) with respect to the critical path parameter, we obtain
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Note that along the critical path both the load and the stiffness may vary simultaneously so
that

(64)

and (63) may now be written as follows

(Vijkqliq1j+ Jl.i Vfk)qosk +Acs[(Vfjkq'ok + Vij)qliqlj+ Jl.i(Vfjq'oj+ Vf)]

+ V~jsqli%+Jl.Y:~ = O. (65)

We have now two options for calculating AS( from (65). Setting the term containing II
as vanishing one obtains

(66)

This form requires the calculation of the prebuckling sensitivity qo.. In order to avoid this
calculation, let us specify the adjoint field II by requiring that the coefficient of qOsk in (65)
vanishes, that is

(67)

By multiplying eqn (67) by qib we note that njkqjjqijqik = 0, so that eqn (67) is consistent
only for symmetric bifurcation.

In view of (37a) and (67), eqn (65) provides the alternative expression for Am namely

(68)

Thus, the critical load sensitivity is expressed in terms of the eigenmode and the adjoint
field Jl.i satisying (67). Note that the field II is the same as the post buckling field qz defined
by (41) for the case of symmetric bifurcation. In fact, when Ac = 0, eqn (41) specifying qz
is identical to (67).

Consider now the singular sensitivity case, typical for study of geometric imperfection
sensitivity. In order to make distinction with the regular sensitivity case, denote the load
variation by Am, ct = qm, S = sm along the critical state path. We have now for cases of
asymmetric bifurcation

Then (5) evaluated at the critical state provides

V C ' m VC l'm V C 'm 0ijqj + ii,lI. + isS = .

Multiplying by qli we get

and in view of (69) we have

sm = 0,

Along the critical path issuing from the critical point, we have

(69)

(70)

(71)

(72)
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Substitute (73) into (70), which gives

2081

(73)

(74)

But the first tenn vanishes since it expresses the equilibrium condition along the prebuckling
path, so we have

(75)

Since (75) is the critical state condition, identical to (69), we conclude that

(76)

where IXc is the scaling parameter with respect to the nonnalized eigenvector ij Ij- Thus the
critical state path vector qOsj coincides with the buckling mode q Ij'

Differentiating the critical state condition Vijqlj = 0, we have

(77)

Substitute

into (77) and multiply by q Ii to obtain

J..m = _ Vijkqtiqljqlk
Vijkqltqtjq'Ok + Vijlqltqtj

Comparing (79) with the expression (42) for post-critical derivative, we see that

(78)

(79)

(80)

and the scaling parameter .xc can be obtained from (46), (48) or (50) depending on the
selection ofpath parameter. Consider now the second order equilibrium equation following
from eqns (76) and (72)

(81)

and the contracted fonn after multiplication by qti

(82)

which provides:

(83)

Assuming that ViAl = 0, so that A. enters linearly into V(qi' A., s), we have:

(84)

In view of (72) there is
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~s = Sm- Sc = !sm~172+ism~173+ .

~A = Am_A" = lm~17+!Xm~172+ . (85)

Neglecting higher order terms and eliminating ~17 in (85) we obtain

(86)

which provides the square root singular sensitivity typical for geometric imperfection.
A similar discussion can be provided for the symmetric bifurcation point, cf. Thompson

and Hunt (1977).

4. FUNCTIONAL FORM OF EQUATIONS

In this Section, we shall consider any surface or beam structure whose behavior is
described in terms of generalized stress a, strain 8, and displacement u. Our derivation will
provide an extension of the previous study by Haftka et al. (1990), and parallels the analysis
of the previous section.

The equations governing large displacement and small strain response can also be
written in a functional form introduced by Budiansky. The strain displacement relation is
written as

(87)

where L J and L 2 are first- and second-order homogeneous operators, respectively, in the
displacement field u. The variation of the strain is specified in terms of displacement
variation as

(88)

where L JI is a symmetric bilinear operator, that is L 1J(u, v) = L11(V, u), defined by

(89)

In particular, (89) yields

(90)

The linear stress-strain law is written as

(91)

where D is the stiffness tensor and 8
1is the initial strain tensor. We assume that the structure

is loaded by a deformation independent load vector Afwhere ,1. is a load amplitude parameter.
The equations of equilibrium are written via the principle of virtual work as

a.458 = ,1.r.45u,

where. denotes a scalar product followed by integration over the structural domain

a•8 = fa. 8 dV.

We again consider the path parameter '1, with eqn (4) for the response becoming

(92)

(93)
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u = uO+liA,,+~uA,,2+ ...,

8 = 8°+IiA,,+ 18.1,,2 + "',
a = aO+ti'A"+1aA,,2 + ....

Differentiating (87), (88) and (89) with respect to the path parameter we get

Ii = Lj(li)+L11(u,n),

ti' = D(8-8i)+D(s-Si),

ti'e08+aeL jI(n, Ju) = AleJu.

Differentiating (95) once more we get

ii = L I(li) + L 1 j(u, 0) + Lin),

a= D(8-8i
) +2D(s-lii)+D(i-ii),

aeJ8+UeL 11 (li, Ju)+aeL11(u, Ju) = XfeJu.

2083

(94)

(95)

(96)

4.1. Regular loading and stiffness sensitivity problems
As in the discrete case we can specialize these equations for the case that" is a load

parameter and for the case where" is a stiffness or imperfection parameter s. For the case
of a load parameter variation, eqns (95) and (96) will provide the loading path response,
namely

and

a' = D(8' - 8i'),

a'eJ8+aeL lJ (u/,Ju) = A'CeJu, (97)

(98)

For the case of a variation of stiffness or imperfection parameter s we obtain the
transformation path specified by the equations for the first order sensitivity

8, = LI(Us)+LII(U,Us),

a, = D,(8-8i)+D8"

aseJ8+aeL1j (u"Ju) = 0,

and for the second order sensitivity

8ss = Lj(us.)+Ljl(U,Uss)+L2(Us),

ass = Dss(8-8i)+2Ds8s+D8s"

(99)

(100)

Let us note that the incremental loading problem (97) is associated with the minimum
principle of the incremental potential energy
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(101)

In fact, the stationary condition bW = 0 generates (97). In order to investigate the strong
minimum condition, consider any kinematically admissible field u", 8". Then, we obtain in
view of (97)

(102)

where ,18' = 8,,-8', Au' = u"-u'. Assume that the incremental problem (97) satisfies the
stability condition for any u'I. 8'

(103)

Then, obviously the strong minimum of W(2)(U', A') occurs, and the right hand side of (102)
is positive definite. The second order loading problem (98) is associated with the minimum
principle of the second order potential energy, namely

So the stationary condition bW(4) = 0 is equivalent to the last equation (98). The strong
minimum of W(4)(u'iA.") occurs when (103) is satisfied for the second order states ti", 8" and
u". The incremental sensitivity problem (99) corresponding to the transformation path is
similarly associated with the minimum principle of the incremental potential energy

(105)

where the last term plays the role of loading. The strong minimum of W(J)(u,,) occurs
provided

(106)

for all kinematically admissible states u" and 8". Similarly as for the loading path, the second
order potential energy corresponding to the transformation path is expressed as follows

and its minimum occurs when (106) is satisfied for the states U"" and 8"".
So far we discussed the direct approach to sensitivity. In fact, after u", 8", tI", and u"",

8"", tI"" are calculated, then the first and second variations of a functional G = G(u, s) can
be obtained as

where

G= Gueu"+G,,,

G= Guu eu"u"+2Gu"eu"+G",,+Gueu,,,,.

(108)

(109)

In order to express the sensitivities in terms of adjoint variables, we impose constraints
following from the equations of the prebuckling path, (87), (91) and (92), thus considering
the augmented functional

G* = G(n(s) , s) -tl" e [8- L] (u) -1L 2(u)] +8" e (tI- D8+ D8i
)

+ A.Ceu-tle [L] (ua
) + L 11 (u, ua

)]. (110)

Differentiating G* and rearranging the terms we obtain
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0* = Gs+Gueus_aa eas-aeL}} (u" ua) -as e [L} (ua)+L}}(u, u«)-aa]

+ase(aa-Daa)-e"eDs(a-It). (Ill)

Equation (Ill) indicates that to avoid the calculation of prebuckling sensitivities we should
define an adjoint problem satisfying

(112)

Then the terms containing u" as and Bs will disappear, and the sensitivity is expressed as
follows

(113)

The second order sensitivity is derived by using bu = buss in (II2c) and bu = bua in
(lOOe). Then with some algebra (109) yields

G= Gua e usus + 2Gus e Us + Gss - 2Dsase aa - Dss(a - ai) e sa

4.2. Critical state sensitivity
At a critical point eqns (97) become singular and cannot be solved for the load

incremental state. The buckling load satisfies the homogeneous form of these equations

(115)

where, as before, a subscript 1 denotes the buckling mode. Substituting bu = UI into (97c)
we get

(116)

Using (97b) and (115b) this becomes

(117)

Finally, substituting bu = u' in (115c) and subtracting from (117) we get

(118)

When the initial strain is independent of the loading, Si' = 0, and (118) is satisfied at a limit
load by A' = O. At a bifurcation point A' oF 0 and so we have reul = O. In the following we
limit ourselves to the case when s;' = O.

Limit point. At a limit point A' = 0, and so by comparing (97) and (115) we note that
u' is a scalar multiple of the buckling mode u I' Its magnitude can be determined by selecting
the path parameter. For example, if the path parameter is selected to be one of the
components ofu, then the corresponding components ofu' is equal to 1. Setting bu = u' in
(98c) we get
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(119)

Similarly, setting <5u = u" in (97c) and using (98a) we get

(120)

From (97b) and (98b) we note that (I" e8' = (I' e8", so that by subtracting (120) from (119)
we get

(121)

which gives us the curvature at the limit point.
Design or imperfection sensitivity can be calculated from eqn (95) by considering a

critical state path following limit points. Along the path we have s = '1, J.. = Am and i> = D,.
Substituting <5u = Uj into (95c) and using (95b) we get

(122)

where the superscript c denotes evaluation at the limit point. Similarly, substituting <5u = ti
into (1I5c) and using (1I5b) we get

Subtracting (123) from (122) we get

1 = D,(8'"-8i
) e8 1

A r, reu
j

•

(123)

(124)

We evaluate the second derivative in a similar manner, starting by setting <5u = UI in (96c)
and using (96b)

Next we set <5u = ii in (115c) and use (115b) to obtain

(126)

Subtracting (126) from (125) we obtain

A. = (Dsssc_=-Dsssi+2Dsi)es} +D8 I e L 2(ti)+UeL Il (ti,u}). (127)
'"ss r. u I

To evaluate (127) we need to solve (95) for Ii, i, and a at A. = An where the system is
singular. We need one additional condition to make the solution unique. This is obtained
by first differentiating (115) along the critical path and setting <5 U = U I

al = Dss} +Di],

al .81 +(I} eLI} (Ii, UI) +aeL2(ul) +(lc eL Il (lij, UI) = o.

Next we set <5u = 01 in (115c) and use (l15b) to have

(128)
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We now use (128b) and subtract (129) from (128c) to get

2087

(129)

Equation (130) is the additional scalar equation needed to supplement (95) at A = Ac •

Bifurcation point. For a bifurcation point, from (118) we have

(131)

so that, from (122) and (123) we get

(132)

and Acs in (124) is not defined. To find Acs for the bifurcation case we consider an energy
functional obtained by setting bu = Ub b8 = 81 in (ll5c)

(133)

Differentiating E with respect to the critical path parameter we have

We also have, by differentiating (115a) and (115b)

81 = LI(ilt>+L,,(iI,u,)+L'I(UC,il j ),

0', = DsO'l +D8,.

Using (135) we transform (134) into

(134)

(135)

E = 20'1 e [L, (ill) +L I,(u, ill)] +20', eL II (ii, uI)+Ds81 e81 +O'eL2(uI)

+2O'ceL'I(ut>iI,) =0. (136)

(137)

so that we can simplify (136) to

(138)

Along the critical path both the load and stiffness vary simultaneously, so that

Substituting from (139) into (138) and solving for Acs we get

A = _ Ds8Ieel+2O'leLII(u~,u,)+O'~eL2(ul)

cs 2O',eLI,(u/C,uI)+O'c'eL2(u,)

(139)

(140)

Equation (140) requires the calculation of the sensitivity of the prebuckling state with
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respect to the stiffness. To avoid this calculation we can use an adjoint method by appending
the equations of the prebuckling path, (87), (91) and (92), to E, with adjoint fields acting
as Lagrange multipliers. That is, the augmented function E* is

E* = E+aae[8-Ll(U)-~L2(U)]+8ae[a-D(e-8i)]+A.hua

-ae[LI(Ua)+LII(U,Ua)] = O. (141)

Differentiating (141) and using (138) we obtain

E* = 2a 1eL II (ti, u,)+D,.81 eel +aeL 2(uJ

+aa e [s- L I (ti) - L 11 (UC
, ti)] +eae [a-Ds(8C _8i

) -Ds]

+A:hua-ae[LI(Ua)+LII(Uc,Ua)]-aCeLII(U,Ua) = O. (142)

We now substitute (139) for tic and aC
, and use (97) to eliminate some of the resulting

terms

E* = 2a j e L jl (u~, u l) + Ds81 e81 +a~ e L 2(uI) + A.cs [2a Ie L II (u", u I) +a" e L 2(uj)]

+aa e (8~ - L I (u~) - L jj (U
C

, u~)] +8ae [a~ - Ds(eC _8i
) - De~]

-a~e[LI(ua)+Lll(U"Ua)]-aCeLII(U~,Ua) = O. (143)

To eliminate all derivatives of prebuckling response with respect to s we require the adjoint
state to satisfy

(144)

Then (143) becomes

so that

A _ Ds(eC-8i)eea-Ds8Ie81
"cs - 2al e L I1 (u'C, UI) + a'" e L 2(u I)

(146)

The sensitivity formulae (124), (127) and (146) are equivalent to the respective formulae
(28), (29) and (68) derived in the previous section by starting from the potential energy function.
Examples of the application of these formulae are presented in Haftka et al. (1990).

5. SENSITIVITY OF NON-POTENTIAL DISCRETE SYSTEMS

In this section, we shall discuss the case of discrete structures for which the tangent
stiffness matrix is not symmetric. This case usually occurs for non-conservative loads such
as friction or fluid pressure acting on structural elements.

The equations of equilibrium are not generated by a potential energy functional and may
be written as

(u, s) = Ap(S), (147)

where A. denotes the proportional loading amplitude, s is a design or imperfection parameter,
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u is the generalized displacement, and f and p denote the internal and external loads, respectively.
Differentiating (147) with respect to a general path parameter '1 we get

Ju+fss = AP+APsS, (148)

where J is the Jacobian fu (also known as the tangential stiffness matrix). Differentiating once
more we obtain

Jii +1(u, u)u+ 2sJsu+fss+fssS2 = .A.p+ 2isps + APssS2 + ApsS,

where 1is the matrix

~ " oj
J(u, u) = L. ou u;.

I I

(149)

(150)

We can specialize these equations for the case when the path parameter is a loading parameter
and when the path parameter is the stiffness parameter s. For the former, (148) and (149)
become

with

Ju' =.A.'p,

Ju" +J'u' = A"p,

J' = 1(u, u').

For the case when s is the path parameter we get

Jus+fs = Ap"

JUss +Pus + 2Jsus+ fss = Aps"

JS = .1(u, us).

(151)

(152)

(153)

(154)

(155)

(156)

At a critical point J becomes singular, and (151) cannot be solved for the load
incremental state. The buckling mode u I is the right eigenvector of J

JUI =0. (157)

When the tangential stiffness matrix J is not symmetric we need also the left eigenvector
v I of J which is, in general, different from u], and which satisfies

viJ = o.

Premultiplying (151) by vi we obtain

A'vip = O.

(158)

(159)

Equation (159) is satisfied at a limit point by .A.' = 0, and at a bifurcation point by
vip = o.

At a limit point A' = 0, and so by comparing (151) and (157) we note that u' is a scalar
multiple ofthe eigenvector UI' Its magnitude can be determined only by specifying the path
parameter. For example, if the path parameter is thejth coordinate, then we have the extra
equation uj = 1 to permit us to calculate u'. Premultiplying (152) by vi we get
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TJ' I

il"=~vip . (160)

Analytical computation of J' is tedious, and may be difficult to implement. Instead it
is suggested that a semi-analytical method may be useful.

To implement the semi-analytical approach consider a product of the form J'z for a
constant vector z where

I d d (Of) d d
J z = d'l (Jz) = d'l au z = d'l de [f(u+ez)]e~O' (161)

If the structural analysis package that we use calculates the tangential stiffness matrix,
J, we can make use of the first equality of (161) and have

(162)

where '1 is the loading parameter. If the tangential stiffness matrix is not readily available,
we can make use of the third equality

J ' ~ ~ [f(u+eu 1)- f(U)]
Uj - d ''1 e

(163)

where e is a small step-size parameter. Equation (162) requires that we find the tangential
stiffness matrix at two close values of '1. Equation (163) requires only the calculation of the
internal loads in the structure for a given displacement field. The bracketed term in (163)
is calculated by incrementing U by a small multiple of the buckling mode U I and recalculating
the internal load f. The derivative with respect to '1 is obtained by finite differences by
repeating the calculation at I] +til].

Design or imperfection sensitivity can be calculated from (148) by considering a critical
state path that follows limit points. Along the path we have s = 1], A= ilm so that (148)
becomes

(164)

Premultiplying by the left eigenvector vi we obtain

(165)

This derivative may also be conveniently implemented by a semi-analytical approach
as

where

vf[r(s+tis) -r(s)]
ilcs = ti T '

SVIP

r = f-ilp

(166)

(167)

is the force residual. Note that r(s+tis) is calculated without changing the load or dis
placement field obtained at the nominal point s. Equation (149) is specialized for the critical
path as
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Jii +(J+2Js)u+f ss = AcssP +UcsPs +Ap".

Premultiplying by vf we arrive at the formula
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(168)

(169)

To evaluate (169) we need to solve (164) for Uat A = A" where J is singular. We need
one additional condition to make the solution unique. This condition is obtained by
differentiating (157) along the critical path to obtain

J(u, U)Ul +JsUI +JUI = O.

Premultiplying (170) by vf we get

(170)

(171)

which is the additional equation required to calculate U.
For a bifurcation point vfP = 0, and by premultiplying (154) by vf we see that both

the numerator and denominator of (165) are zero, and Acs cannot be calculated from (165).
Note that it would appear that we can get the numerator of (165) to be zero even for a
limit point in exactly the same way. However, for a limit point there is no solution for UJ>

so that the right hand side of (154) is inconsistent with the singular system.
To calculate the sensitivity of the bifurcation load we define an energy function

(172)

where Il is a Lagrange multiplier vector used to enforce prebuckling equilibrium. Differ
entiating (172) with respect to the critical path parameter we get

(173)

where Uo denotes the prebuckling state. Along the critical path both the load and the stiffness
vary simultaneously so that

(174)

so that (173) may be written as

(175)

We now have two options for calculating Acs from (175). We can set II to zero and get

(176)

This form requires the calculation of the prebuckling sensitivity UOs' Instead we can
define Il to zero out the coefficient of UOs in (175)

(177)

where
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Then, from (175) we get

Z. MR6z and R. T. HAFTKA

(178)

(179)

The term viN in (177) appears to require much algebra and computation for implemen
tation. However, from its definition we have

(180)

so that

(181)

When J is symmetric, then U1 = VI and ufJ(ut) = O. Furthermore

(182)

so

(183)

Equation (181) shows that the term can be approximated with two evaluations of the
Jacobian, while (183) shows that for the symmetric case no evaluation of the Jacobian is
necessary.

6. EXAMPLE

6.1. Example 1: sensitivity ofa redundant beam structure
The first example is a redundant beam system where the prebuckling state depends on

the stiffness distribution. The axial force N and the bending moment M are the generalized
stresses, with the axial strain e and the curvature K as the conjugate generalized strains. The
strain displacement relations (87) now have the form

(184)

where v denotes the axial displacement, w the lateral displacement, and the x-subscript
denotes differentiation with respect to the axial coordinate along the member. Hooke's law
is

(185)

where EA and EI are the extensional and flexural stiffnesses of the member, E, A and I are
Young's modulus, cross-sectional area and moment of inertia, respectively, and ei denotes
the initial strain.

The equation of equilibrium (92) now becomes
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~ f (Mt5K+N&)dx; = Aqet5u,

where I; is the length of the ith beam in the system. The incremental form (95c) is

2093

(186)

(187)

For the prebuckling calculations it is typical to neglect the nonlinear term y in the strain
displacement relation (184). As a result, the prebuckling response is linear in the load
amplitude A

(188)

where M; and N; are the stress resultants due to initial strains, and where M' and N' satisfy
a linear equation corresponding to (97c) with '1 = Aand the L 11 term neglected

~f(M' t5K+N' 58) dx; = qet5u.

The buckling mode equations (115) become

L (ti (Mjt5K+Nj&+Nwxlt5wx)dx; = O.
i Jo

(189)

(190)

The second term in eqn (19Oc) is often neglected because it is zero when the prebuckling
state is momentless.

For this example we assume that the buckling is of the bifurcation rather than limit
load type. This occurs when the prebuckling state is momentless or when the prebuckling
state has some symmetry which is destroyed by buckling. In this case the sensitivity of the
buckling load is given by (140) which becomes

(191)

If, as is commonly done, the prebuckling bending wand buckling mode axial response
(Nj, exl) are neglected, then eqn (191) takes the more familiar form of

~f [(EI)sKf+Nsw.~I]dxi
Acs = - ---i-=-'-~----

L 'N'w~ldx;
i 0

(192)

Equations (191) and (192) require the calculation of the derivatives of the prebuckling
response (Ns and wxs). The adjoint method permits us to avoid this calculation. The adjoint
fields satisfy (144) which become

SAS 31: 15-F
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I f'i (Nac5a+Mac5K-2Nlw<lc5w<+NCw~<5wx)dxi = 0.
I Jo

(193)

Then the buckling load derivative is given by (146) as

~r[(EA>s(aC -a;)aa + (EhKCKa- (EA)saT (EI),Kn dx;

).el = (194)

L (2NIW~WxI +N'w;l)dx;

Neglecting prebuckling bending and buckling mode axial response, (193) and (194)
become

and

L rli

(N°&+Ma<5K+Ncw~c5wx) dx; 0,
; Jo

~r[(EA)s(aC
- ai)aa + (EI)sK'KO

- (EA)sKf] dx;
lcs = ····_-_····--····_·~--l·· -----

L rI N'W;1 dx;
i Jo

(195)

(196)

As an example, consider a simple two-bar structure (Fig. 3), loaded through a rigid
plate moving vertically. The structure is subjected to load p and temperature differential
dT applied to bar A. The initial strain a; = adT in bar A generates the following self
equilibrated force system

N~= (197)

where a is the coefficient of thermal expansion. The external load p generates member forces

As the bars are hinged at both ends, the buckling mode takes the form U I = 0,
WI = sin (nxfl), and the critical loads of bar A and bar Bare

I
E

I
1

AT 2
EA,......., 1 2 rEAzEJ E1z

0) b)

Fig. 3. (a) Two bar structure. (b) Adjoint structure.
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(199)

Assume that!1T > 0 so that bar A buckles first. We also assume the moment of inertia
to be related to the area as

f = pAn, (200)

where p is a constant factor and n depends on the cross-sectional form and its variation.
Then

aAe = n
2
EfA[n(AA+A B) _ AB ]

aA A /2 A~ A~ ,

OAe n2EfA

oA
B

= FAA -rxE!1T.

Equations (201), obtained directly, can now be used to check (I92) which becomes

(201)

(202)

The derivatives aNA/oAAand aNA/oA B in (202) need to be evaluated at A= Ao and
from (197) and (198)

With member 1 buckling

. (nx)
WI = sm T '

and from (198)

(204)

Also

(205)
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(206)

Substituting from (206) into (202) we verify (201).
The adjoint method (196) becomes for our example

I: [E(c~ - af!T)c~ - Eft KTJ dXA

I: N~w;l dXA

I: &~c~dxB
I: N~w;l ~:~

From (195) the adjoint field satisfies the strain displacement relation

2
a a 2 a n 2 nx

CA = UxA - WxA = U xA - T'i COS --T'

(207)

(208)

The second term on the right hand side of (208) is a variable initial strain term, which has
the same influence on member forces as a constant initial strain of the magnitude

The resulting axial member forces are

The corresponding strains are

No = -N~.

(209)

(210)

a N~ n 2 A B

cA = EA A = - 2/ 2 AA+A
B

'
(211 )

To evaluate (207) we also need the strains in members A and B at the buckling load:

(212)
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R

ol bl

Fig. 4. Simply supported cylindrical shell with a central point load. (R = 2540 mm, L B = 504
mm, E = 3105 N/mm2

, v = 0.3, t = 6.35 mm).

(213)

Naturally, EA = Ea. Substituting into (207) we get

(214)

which is the same as J~ (oNA/oAA)w;, dXA in (206). Since the other terms in (oAe/oAA) in
(202) are the same as in (207) we have confirmed that the adjoint and direct method give
the same result for oAe/oAA' Similarly for oAe/oAB in (207) we have

(215)

whic.h agrees with the third integral of (206).

6.2. Example 2: shallow cylindrical shell subjected to point load
The second example is a shallow cylindrical shell simply supported along two straight

edges and loaded by a central load p (see Fig. 4). The shell parameters are R = 2540 mm,
L = B = 504 mm, E = 3104 N/mm2

, y = 0.3 and the thickness t = 6.53 mm.
This example, taken from Haftka (1993) is intended to demonstrate the implementation

of (166) with a general purpose finite element program.
Equations (165) and (166) for the derivative of the limit-load have to be implemented

right at the limit-load itself. However, it can be difficult to obtain structural response exactly
at the limit-load, so that the calculation must be implemented away from the limit-load.
Therefore, the derivative based on (166) was calculated for several points near the limit
load along the prebuckling path. Derivatives with respect to the thickness and Poisson's
ratio are presented in Table 1. These are given as logarithmic derivatives

(216)

One advantage of logarithmic derivatives is they show the underlying functional
relationship. Thus, if At" is proportional to sn then OIAC/OS = n. Table 1 shows that the
buckling load is approximately proportional to [2. The value ofabout 0.1 for the logarithmic
derivative with respect to v is consistent with a proportionality to (l-v 2) 112. The log-



2098 Z. MR6z and R. T. HAFTKA

Table I. Logarithmic derivatives of limit-load amplitude with respect to
shell thickness and Poisson's ratio for cylindrical shell

A t aA, v aA,
A, Ie, at Ie,. av

FD SA FD SA

0.9996 2.067 2.073 0.1095 0.1099
0.995 2.103 0.1136
0.973 2.180 0.1216
0.928 2.294 0.1325
0.885 2.435 0.1454

arithmic derivative of this term is v2/(1 - v2
) = 0.099 for v = 0.3. In Table 1 the semi

analytical (SA) derivative form (166) is compared to a forward-difference (FD) derivative.
The results indicate that substantial error can occur if the derivative is calculated too far
away from the limit load.

7. CONCLUDING REMARKS

The present paper provides a variational approach to first and second order sensitivity
analysis of non-linear structures undergoing deformation in regular and critical states. The
direct and adjoint approaches were discussed. It was shown that there is a close connection
between post-critical deformation analysis and sensitivity. In fact, for the case of symmetric
buckling, the adjoint fields are identical to second order post-critical fields following from
the asymptotic expansion in terms of deformation parameter. It is believed that the present
approach will prove useful in analyzing structural redesign or optimization, and also in
assessing the effect of damage or structural imperfections on the critical load value.

One important issue is the sensitivity of post-critical response to variation of structural
parameters. This problem will be discussed in a separate paper.
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